On the Influence of a Vehicle’s Apparent Intelligence on Driving Behaviour and Consequences for Car UI Design

Serge Thill
Interaction Lab
Informatics Research Centre
University of Skövde
541 28, Skövde, Sweden
serge.thill@his.se

Maria Nilsson
Cooperative Systems Group
Viktoria Swedish ICT
Lindholmspiren 3A
417 56, Göteborg, Sweden
maria.nilsson@viktoria.se

Paul E Hemeren
Interaction Lab
Informatics Research Centre
University of Skövde
541 28, Skövde, Sweden
paul.hemeren@his.se

ABSTRACT

We describe initial results from a car-simulator-based study. Specifically, we show a strong correlation between driver gaz-
ing behaviour and how intelligent they rated their car to be,
indicating that human/car interactions are affected by the
cognitive abilities ascribed to the vehicle by the driver.

Categories and Subject Descriptors

H.1.2 [User/Machine systems]: Information systems -
Models and principles

General Terms

Design, Human Factors

1. INTRODUCTION

The present work in progress deals with how drivers per-
ceive increasingly automated vehicles and how that affects
their behaviour. More specifically, the simulator study, from
which we present first results here, investigates whether the
degree of perceived vehicle (or in-vehicle systems) intelli-
gence correlates with changes in driving behaviour and ex-
pectations on human/vehicle interactions. Our overall hy-
pothesis is that drivers will behave differently in a manner
that affects driving style the more intelligent a vehicle
appears to be. The latter can be influenced for instance by
how interactive (communicating additional information to
the user and accepting new commands) and/or autonomous
(capable of carrying out certain tasks without driver inter-
action) the vehicle is. Here, we show that this appears to
be the case. The present study is thus of interest to car UI
designers since they may be able to influence this change in
behaviour with their designs.

2. METHODS

2.1 Simulator, Environment, Task

It would go beyond the limits of this extended abstract to
describe the experiment in detail. We therefore only describe
aspects of our simulator-based study essential for the present
results.

The simulator, equipped with an eye tracker, consisted of
the front part of a real car (which the participants operated
as they would a normal car) surrounded by a curved screen
on which the environment is displayed. Participants were
asked to drive through a road environment (see Fig. 1)
towards goal positions as fast as possible while respecting
traffic laws. They did so thrice. The first session served as a
baseline in which traffic density was kept at a medium level,
and only the upcoming junction number was displayed on
the screen as an aid. In the subsequent sessions, participants
experienced different traffic densities and had access to two
types of navigation aids displayed heads-up on the screen:
(1) Prior to each road junction, an arrow indicated which
road to take and (2) additionally, a line of text justifying the
choice was displayed (e.g. by claiming that the chosen road
features less traffic). The overall purpose of the different mix
of traffic densities and navigation aids described above was
to provide a range of different driving experiences which may
influence the apparent intelligence of the navigation aid.

2.2 Participants and Procedure

Participants were asked to fill out a pre-questionnaire on
background and existing expectations. They then performed
the driving task as described above. To assess their cognitive
load, participants also carried out a secondary task (count-
ing short but clearly audible beeps). After each session, they
were asked to fill out a questionnaire. Twenty-four partic-
ips (8 female, 16 male) completed the experiment while
six participants did not, due to a failure to show up on time
(1) or simulator sickness (5).
The questionnaires were used to identify match or mismatch of expectations and perceptions [2]. Each included a total of 17 statements, to be rated 0-6 on a Likert scale, targeting (a) apparent intelligence (b) performance of the driver and the system, (c) trust, (d) attitudes towards the system. Here, we only discuss first results pertaining to (a).

2.3 Data Collection and Analysis

Here, we considered three distinct variables. First, we measured driver behaviour through the proportion of the overall task duration that drivers spent gazing through the windscreen (here called front gaze time for brevity). We used an eye tracker designed to identify which particular region of interest the driver was looking at at any point in time (e.g. windscreen, mirrors, dashboard). Second, the performance on the secondary task is expressed as the participant’s mean number of errors per occurring beep (a score of 0.1 would therefore indicate one error every 10 beeps) and is a measure of cognitive load, known to influence front gaze time [3]. Finally, the questionnaires assessed how intelligent participants judged their driving aids in the second and third trial. This therefore measures how intelligent drivers actually perceived the system to be rather than what may be expected given knowledge of the experimental design.

The fundamental question is whether or not the variables above are correlated. We expect in particular that change in intelligence is thus not just due to the effect cognitive load has on gaze. We also found (not discussed in detail here) that the most informative aid (arrows and text) tended to be rated more intelligent than arrows alone; the increase in gaze time in lower-rated conditions is thus not likely to result from the additional visual information. Finally, we found no significant correlation between the performance on the secondary task and front gaze time ($r = 0.1622$, $p > 0.3$, $df = 42$), indicating that the cognitive load here (including the secondary task) was not high enough to, by itself, significantly affect gaze time.

3. RESULTS

We find, as hypothesised, that participants who rate intelligence higher had a significantly lower front gaze time ($r = -0.4255$, $p \approx 0.0005$, $df = 39$, see Fig. 2). Importantly, no correlation was found between the rated intelligence and the performance on the secondary task ($r = -0.0111$, $p > 0.9$, $df = 43$), indicating that cognitive load was not a decisive factor when assessing the intelligence of the navigation aids. The significant correlation between gaze time and rated intelligence is thus not just due to the effect cognitive load has on gaze. We also found (not discussed in detail here) that the most informative aid (arrows and text) tended to be rated more intelligent than arrows alone; the increase in gaze time in lower-rated conditions is thus not likely to result from the additional visual information. Finally, we found no significant correlation between the performance on the secondary task and front gaze time ($r = 0.1622$, $p > 0.3$, $df = 42$), indicating that the cognitive load here (including the secondary task) was not high enough to, by itself, significantly affect gaze time.

4. DISCUSSION

The results here show that changes in driving behaviour (gaze) correlate with the perceived intelligence of the navigation aids. This is notable since the more time is spent looking straight ahead, the less peripheral information is obtained (for instance from the rear view mirrors). As such, too much time spent looking ahead can be detrimental (as can too little) since it reduces the driver’s ability to obtain a full picture of the traffic situation [3, 1]. The results here suggest that one way to influence driver gaze patterns is to manipulate how intelligent the vehicle appears to be through appropriate UI design.

As previously said, we also collected data pertaining to the driver’s trust, detailed driving behaviour, performance and attitudes and the analysis thereof is ongoing. We next plan to address what factors influence perceived intelligence.

This is not a trivial question since it is not necessarily the case that “better” or more “optimal” behaviour or even the automatic solving of more complicated tasks will directly influence this perception positively (in particular if the driver isn’t even aware that this is happening).

5. ACKNOWLEDGMENTS

This research is part of a pre-study CARS funded by Vinnova (Sweden). The authors would like to thank Regina Johansson, Reetta Hallila and Emil Kullander at Volvo Cars Corporation for their technical assistance during the experiments.

6. REFERENCES

